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Abstraet. Using the diagram technique, a high-frequency expansion (with respect to powers 
1 /m? is obtained for polarization operators defining dielectric function of plasma at 
arbitrary strong interaction between panicles. On this basis the spectrum of plasma oscilla- 
tions for non-ideal classical one- and two-component plasmas is studied. There is a good 
agreement with the data of molecular dynamic (MD) calculations without using any 
adjusting parameters. It is shown that the non-Coulombic nature of interaction between 
panicles has a dramatic influence on the description of the spectrum of plasma oscillations 
in the classical two-component plasma. 

1. Introduction 

Presentlymuch attention is paid to the theoretical study of plasma oscillation spectrum 
o ( k )  in non-ideal systems of charged particles (Ichimaru et a1 1975, Kalman 1978, 
Baus and Hansen 1980, Ichimaru 1982, Cauble and Boercker 1983, Ichimaru et al 
1987, Adamjan et a1 1989). This is explained first of all by intensive study of dynamic 
structural factors of plasma systems both in real experiments dealing with the scattering 
of beams of neutrons, electrons or photons (Temperley et a1 1968, March and Parinello 
1982) and in MD calculations for classical systems (Hansen et a1 1974, 1975, Hansen 
and McDonald 1978, 1981). The spectrum of plasma oscillations in such experiments 
is defined by the positions of maxima w,.,(k) in the dynamical structural factor with 
a fixed value of wavevector k Correspondingly, for the theoretical studies most attention 
was paid to the investigation of the dynamic structure factor of a plasma. Only on this 
basis was the spectrum of plasma oscillations determined on the assumption that 
w(k)-wm.,(k) .  Naturally, it was assumed that the maxima available in the structure 
factor were expressed fairly well. The measure of it is the relation of semi-width of 
the maximum with respect to frequency w and the respective value wmax(k) .  

At the same time, based on a consistent theoretical study of plasma oscillations as 
collective excitations in plasma, the spectrum w ( k )  must be defined through the poles 
of 'density-density' Green function or zeros of dielectric function (Kraeft et a1 1986). 
Such an approach, well known in the ideal plasma theory (e.g. Silin and Rukhadze 
1961), was successfully used in the research of sound oscillation spectra in liquid metal 
plasma (Belyayev et a/ 1989). According to this approach, the main problem lies in 
the calculation of the dielectric function of a non-ideal plasma. Although a considerable 
number of studies have been dedicated to this problem (apart from those already 
mentioned, see also Carini et ol 1980, Gorobchenco and Maksimov 1980, Sjorgen and 
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Hansen 1982). the successful study of the effects of interaction in dielectric function 
of plasma with arbitrary values of frequencies and wavevectors k still remains one of 
the major problems of plasma theory. 

However, when studying a plasma oscillation spectrum, it is possible to simplify 
the problem using the following assumptions: 

(a) Proximity of spectra o ( k )  to plasma frequency up, 

E A Allahjarov e! a1 

where z.e is the charge, m. is the mass and n. is the average density of the number 
of particles of type a. 

(b) Presence of small parameters 

6 kB -<< 1 
U P  U P  

-<< 1 

where B and C are respectively characteristic speed and frequency of collisions for 
plasma particles. When studying spectrum w ( k )  in weakly non-ideal plasma, conditions 
(a) and (b) are sufficient for using a high-frequency (with respect to powers of 1 / w 2 )  
expansion for the dielectric function of plasma (Silin and Rukhadze 1961, Kraeft e! 
a1 1986). 

This approach was used for the calculation of the dispersion of plasma oscillations 
in non-ideal one-component (OCP) and two-component (TCP) plasmas with purely 
Coulombic potentials of interactions between particles (Allahjarov and Trigger 1992). 
The divergence associated with the impossibility of a purely classical description of 
the electron-ion structure factor at small distances was eliminated by simulating 
quantum effects in this factor. 

In this paper the expansion with respect to powers of l/02 for dielectric function 
is used for studying the spectrum U (  k) in non-ideal classical plasma. For this purpose, 
using diagram technique methods, the expansion with respect to powers of I / w 2  was 
obtained for the polarization operators defining the dielectric function of plasma at 
arbitrarily strong interaction between particles. The obtained results well agree with 
the data of MD calculations (Hansen e! a1 1974, 1975, Hansen and McDonald 1978, 
1981) without using any adjusting parameters. It is shown that the account of the 
non-Coulombic nature of interaction between particles in classical TCP considerably 
influences the description of plasma oscillation spectra. 

2. Basic definitions 

Let us consider electrically neutral plasma at temperature T (in energy units) 

z.en. = 0. 
s 

(3) 

According to the linear response theory (Akhiezer and Peletminskii 1977) the 
average density of charge in plasma being exposed to a weak electric field is equal in 
Fourier components 

~ ( k  0 )  = L F J ~ ,  o +iO)dc’(k 0 )  (4) 
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where (p(')(.4, w )  is the scalar potential of extemal electric field, LFJk, z )  is the 
'charge-charge' retarded Green function being analytical in the upper semi-plane of 
complex z(Im I> 0 )  

LsRb(k, 2) = V-'((SA;lSA")), (6) 

where S i t =  & -  n.VS,,,, A: is the Fourier component of the operator of the number 
density for type a particles, 

. m  -: I d t  exp(izt)([A(t), L?(O)])  (7) 

wnerc [A, Bj = Ao" - BA, ( . . . > is the averaging with respect IO a iarge canonicai 
ensemble with exact plasma Hamiltonian, A( 1 )  is operator A in Heisenberg representa- 
tion, and V is the system volume. 

0 

1 A A.. A .  

The spacetime behaviour of charge density, 

p(r, I )  = 1- 1 % p(k, w )  exp(-iot+ikr) . --27r (2n) 

taking (4) into account, is fully determined by singularities of Green function LFo(k, z) 
in the lower semi-plane of complex z. Hence to study the spectrum of longitudinal 
oscillations o ( k )  it is necessary to define poles n ( k )  of Green function LFJk, z )  at 
Im z <O. Then 

w(k) = Ren(k). ( 8 )  

Relation (8) holds only at the condition (Silin and Rukhadze 1961, Kraeft et a1 1986) 

Therefore, taking into account (9), one can state that 

o (k )  = Re n ( k )  - wmax(k). (12) 

Relation (12) is the basis for comparison of theoretical results for oscillation spectrum 
o ( k )  with experimental and theoretical data for positions of maxima wmaX(k) of 
function S,(k, 0). 
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The most popular approach for determination of the poles of Green function 
LFj(k, z )  for plasma systems is based on the introduction of longitudinal dielectric 
function ~ ' ( k ,  z )  describing the screening effects of extemal field (Silin and Rukhadze 
1961, Kraeft ef a/ 1986), 

It follows directly from (13) that poles n (k )  are defined by equation 

€ ' ( I S  2) = o  (14) 

which is well known in the theory of plasma oscillation. To study function ~ ' ( k ,  z )  we 
make use of the diagram technique methods of perturbation theory (Abrikosov ef al 
1965). 

3. Diagram representation for longitudinal dielectric function 

The retarded Green function LFb(k, z) (6) is the analytical continuation of the respective 
temperature Green function 

~ : ~ ( k ,  in,) = v-'((8ii;I8n^Qinm (15) 

from a discrete set of points on imaginary axis in. = 2rrinT, n = 0, 1, . . . to the upper 
semi-plane of complex z. Using the diagram technique of perturbation theory one can 
easily make sure that function LTb(k,inn) satisfies the system of equations (e.g. 
Klyuchnikov and Trigger 1976, Bobrov ef af 1990) 

LTb(k, inn)=nab(k,i%)+x ndk, inn)Ud(k)Lib(k,inn) (16) 

with Uab(k) being the Fourier component of interaction potential for particles of type 
a and b, II,(k, in.) being the exact polarization operator which is a part of the Green 
function which is in turn irreducible in the 'k-channel' along the line of interaction. 

In the one-component plasma (OCP) case formulae (16) can be written as (Kraeft 
et a1 1986) 

cd 

Solution of the set of equations for a two-component plasma (TCP) leads to the following 
result (Klyuchnikov and Trigger 1990) ( a  # b )  

(18) 
Lza= d-'[naa- ubb(naanbb-n:b)l 

Lzb= ;-'[nab- uP.b(nnanbb-n:b)l 

E = 1 - 1  ucdnd-(u:i- u~eu!i)(IIeJIii-n:i). (19) 
cd 

In a purely Coulombic case, when 
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the last term in relation (19) turns to zero and the dielectric function E ( k ,  z) being the 
analytical continuation of function ;(Sin.) (equation (19)) coincides with the longi- 
tudinal dielectric function & ' ( I C ,  z). This also applies to the case of OCP. Using (18), 
(19) we find 

E-'(k,z)=l+X U.b(k)L~b(k,z). (21) 
ab 

According to (13), (18), (19), zeros of function ~ ' ( k ,  z) are determined by zeros of 
function E(k ,  z). Therefore the dispersion equation (14) for determination of poles 
n ( k )  can be represented as 

E ( k ,  2) =o (22) 

for arbitrary form of interaction between particles. With condition (9) satisfied, the 
dispersion equation for the spectrum of plasma oscillations o(k)  = R e n ( k )  can be 
written as (Silin and Rukhadze 1961) 

Re E ( k ,  o+iO) =O.  (23) 

In accordance with the discussion in the introduction, we will use high-frequency 
(with respect to powers of ] lo2)  expansion in the real part of dielectric function 
E ( k ,  o+iO) to solve equation (23). It should be noted that such an approach cannot 
be used for the calculation of Imn(k )  which is defined by means of the value of 
Im E ( k ,  o(k)) (Win and Rukhadze 1961). The quantitative and qualitative estimations 
of the value of ImR(k)  may be found in papers by Carini and Kalman (1984) and 
Brouwer and Schram (1988). 

4. High-frequency expansion for polarization operators 

By integrating by parts in (6) and (7) for Green function LFb(k, z), it is easy to make 
sure that 

+o(z-') L.Rb(k,z)=-+- 
M g ) (  k) M z ) (  k) 

2 2  Z4 

( 2 5 )  

(26) 

1 
M!k)(k) = G ( [ k , k ,  ibJ)  

M%k) =,([k,k, ke~%). 

Here i= i / f iV[ f i ,  4, and 2 is the current density operator for type a particles. In 
deriving formulae (24)-(26), it was taken into account that 

n^;=ik m k .  (27) 

i 

After a simple but cumbersome calculation of commutators in (25) and (26) (similar 
calculations are described in detail in papers by Adamjan et al 1985, Meyer and 
Tkachenko 1985) we find 



6328 E A Allahjarov et a1 

Here (T.) is the exact average kinetic energy corresponding to a single particle of type 
a, Sab(q) is the static structure factor, 

s a b ( q )  = &,b+(nanb)”2 d3r exp(iqr)kb(r) - 1) (30) 

g&,(r) is the cxzc! pzir cn!Te!*tian filnctio!! fer pe.‘ic!cs oftypes a a d  b. !x the c!assica! 
J 

limit (fi +. 0), the second term in the square brackets in the right-hand side of equation 
(29) is absent, and (T.) = 3 T/Z.  

Substituting (24)-(29) in (18) and (19), we get the expansion with respect to powers 
of 1 / w 2  for polarization operators: 

Relations (31)-(33), with account of (19), determine the high-frequency expansion 
for the dielectric function which can be used for solving the dispersion equation (23). 

Let us note that in the purely Coulombic case (20) the expansion with respect to 
powers of 1 / 0 2  for the longitudinal dielectric function is as follows: 

where 
2 2 1/2 

5. Spectrum of plasma oscillations in classical OCP 

When studying a simulated one-component system of charged particles with compensat- 
ing background, as a potential of interaction between particles, the Coulombic potential 
(20) is usually used. Therefore we will use relation (34) for solution of dispersion 
equation (23). 
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According to (34), the OCP of dielectric functions with small wavevectors (accurate 
to k z )  is as follows (Ichimaru and Tange 1974): 

o2 2w2k' 
o o ma 

~ ' ( k ,  o+iO)= I-+-+( T.) (35) 

where 

is the exact average potential energy of OCP per one particle. From (35) the accurate 
limit relations for ~ ' ( k ,  w+iO) for OCP (Bobrov er a1 1988, 1990) can be obtained 

(36) 

In its tum, spectrum o ( k )  of plasma oscillations for OCP with small wavevectors 
according to (23) and (25) is 

o2 lim ~ ' ( k ,  w+i0) = 1-2 
k-0  0 2 '  

o( k) = up [ 1 +- k2 (TJ(  1 +-I] 
4 m a  

In particular, for a collision-free plasma (Kraeft et al 1986) 

(37) 

In non-ideal OCP inequality (38) can be violated, i.e. derivative J o ( k ) / J k  can take 
negative values (Baus and Hansen 1980). In particular, from (37) it directly follows that 

To study the sign in the right-hand side of relation (39) for classical OCP one can use 
the data of MD calculations (Slattery er al 1982), according to which for r >  1 

where 

a = -0.897 774 b = 0.950 43 c = 0.189 56 d = -0.814 87. 
As a result, the derivative J o ( k ) / J k  becomes negative at r>  13.8. 
To study the spectrum o ( k )  of plasma oscillations for classical OCP for arbitrary 

wavevectors it is necessary, as seen from (34), to determine the static structure factor 
Saa( 4). For this purpose we will use determination (30) and calculate the pair correlation 
function in the hypemetted chain (HNC) approximation 

gas( r )  = 1 + hsa( r )  = exp baa( r )  - cas( r )  (41) I T 
taking account of the Omstein-Zemike relation 
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The results of calculations in HNC approximation agree well with the data of MD 

calculations (Ichimaru 1982). The set of equations (41) and (42) is solved within the 
frames of iteration procedure described in detail in paper by Ng (1974). 

The results of calculation of spectrum w ( k )  of plasma oscillations for classical OCP 
are presented in figure 1, where quantity a is equal to r.. The obtained results agree 
well with the data of MD calculations (Hansen et a1 1974, 1975). 

E A Allahjarov et a1 

t 
Figure 1. Dispersion curves o ( k )  for OCP. Con- 
tinuous curves (from top to bottom of figure): calcu- 0.8 

0.6 lations for r =0.993, 9.7, 110.4. Broken curves: 
0 0.6 1.2 1.8 2.4 3.0 rssults of Carini and Kalman (1984) for correspond- 

;::\?!, , , , , , , , , , , , , ,I 
ka ing r. 0: MD data (Hansen et nl 1974, 1975). 

6. Spectrum of plasma oscillations io classical TCP 

Spectrum o ( k )  of plasma oscillations in TCP sufficiently differs as compared with the 
OCP case. First of all; the relation (36) fails to be fulfilled. According to (34) dielectric 
function in a purely Coulombic case with small wavevectors (accurate to k2)  is 

+ O ( d ) .  (43) 

So the spectrum w ( k )  of plasma oscillation in TCP at k+O can be either more or 
less than the plasma frequency op depending on the system parameters. The derivative 
J o ( k ) / J k  at k-rO can be negative as in the OCP case. 

The second important circumstance is associated with the fact that no purely 
Coulombic model can be used to describe a classical TCP (as distinct from OCP) due 
to instability with respect to electron-ion interaction. This circumstance appears first 
in the calculation of correlation functions, in particular gab(r) and S d k ) .  

This problem is usually solved with the use of efficient interaction potentials 
accounting for quantum effects at small distances (Kraeft et a1 1986). In particular, in 
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MD calculations use is usually made of the following effective potentials (Hansen and 
McDonald 1978, 1981): 

Here 

In r-space, potentials (Inb (44) are 

r (45) 

To calculate static structural factors Sab(q) we will use definition (30) and pair 
distribution functions in the HNC approximation for multi-component systems 
(Ichimaru et a/ 1987) 

gab(r)=Ss.b+hab(r)=exp hnb(r)-Cab(r)-- (46) T 

hab(r)=c.b(r)+E nd drl  cadr-rl)hddrI). (47) 
d J 

Next, assuming that the account of the non-Coulombic nature of interaction is 
sufficient only for calculation of structural factors Sab(q), we will use for determination 
of spectra o(k) of plasma oscillations in hydrogen TCP the relation (34) for longitudinal 

ted in figure 2 differ qualitatively from the data obtained by MD calculations. Here, 
the dimensionless length parameter r, is defined by the ratio of ion-sphere radius to 
the Bohr radius a,, i.e. 

die!e&c r,,aia!! correspa.n.ding ?[? !he Cnu!nmbic CZSP. rhe ca!cn!atinn resn!!s presen- 

a amee2 
a a, f i z  ’ 

r =-=- 

0.8- 

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 

Fipure2. Dispersion cuwcs w ( k )  for TCP using (34). 
Continuous curve: calculation for parameten r=  2, 
r, = I .  Broken curve: calculation for parameters r=  
0.5, r, = 1 and r = O S ,  r,= 0.4. x: MD data for r =2,  
r ,=  1. 0: MD data for r=O.5, r,= 1 (Hansen el al 
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The reason is the necessity of a successful acwunt of the non-Coulombic nature 
of interaction between particles for the calculation of dielectric function in classical 
TCP. Then, to solve the dispersion equation (23), it is necessary to use determination 
(19) and high-frequency expansion (31)-(33) for polarization operators nab. 

When using effective potentials (44), the polarization operators for classical TCP 
can be conveniently revresented as follows: 

(49) 

0 0.5 1.0 1.5 2.0 2.5 
ka 

Flgare 3. Dispersion curves w ( k )  for TCP. Calcula- 
tion for parameters r = 0.5, rr = I (0) and r = 0.5, 
r.=0.4 (B). 0: M D  data for r=O.5, r,= 1 (Hansen 
el a1 1978, 1981). The broken CUNC corresponds to 
the continuous C Y N ~  in figure 2, using (34) for para- 
meters r=2, , ,=I .  

0 0.5 1.0 1.5 2.0 2.5 
ka 

Flgure4. Dispersion N N ~  o ( k )  for TCP. Calculation 
far parameters r=2, r,= 1 (continuous curve). x :  
MD data (Hansen er 01 1978,1981). 7 h c  broken C U N ~  

corresponds to the continuous CYNC in figure 2, using 
(34) for parameters r=2, r,= I. 

* 

3 

0 0.5 1.0 1.5 2.0 2. 
ko 

Flpure 5. Dispersion CUNCS w ( k )  for TCP at various 
values of ion charge. Continuous CUNC: calculation 
for parameters = 0.5, r, = 0.4 (moving up: zi = 1, 2. 
3). Broken curve: calculation for parameters r = 0.5, 
r , = l  ( q = 1 , 2 ) .  
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where 

where 

Tab= Aab 

and wavevectors k and q in the relations are made dimensionless with reference to 
the average distance r,. 

 ne resuits of tne respective caicuiations presented in iigures 3 and 4 agree weii 
with the data of MD calculations (Hansen and McDonald 1978, 1981). So a successful 
account of the non-Coulombic nature of interaction between particles has an essential 
influence on the description of plasma oscillation spectrum of classical TCP. 

Figure 5 shows the results of the calculated spectrum o ( k )  for classical TCP for 
different charges of ions z, in the assumption that m, - z,. 

111 L.UIICI"DI"LI LCL U> >LICS> UIIL.Cc: d & W L  L l l d l  nu a",""L"'c"L yd1drncrc;Is IId-Vc: VCCII 

used in the calculations. So the use of high-frequency (with respect to powers of 1/w2) 
expansion for dielectric function must also be very efficient in studying spectra of 
plasma oscillations in real plasma systems. 

- 

T.. ^^_^I .. ..:.... I". .._ -.---- ^_^^ .L-. -- ->:.."A-....& - ~ - "  --.-..- L".- LA-.. 
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